
 Journal of Fluids and Structures  (1997)  11 ,  207 – 222

 APPLICATION OF A GENERAL PURPOSE FINITE
 ELEMENT METHOD TO ELASTIC PIPES

 CONVEYING FLUID

 L .  G .  O LSON   AND  D .  J AMISON

 Department of Mechanical Engineering , Uni y  ersity of Nebraska – Lincoln
 Lincoln , NE  6 8 5 8 8 - 0 6 5 6 , U .S .A .

 (Received 18 March 1996 and in revised form 26 November 1996)

 The motion of elastic pipes conveying fluids has been studied extensively for various
 idealized cases for many years .  In this paper we show that recent advances in finite
 element methodology have made it possible to simulate these coupled fluid – structure
 systems within the context of a general-purpose finite element program .  Using a nonlinear
 Lagrangian – Eulerian finite element formulation we compare computational and theoreti-
 cal results for four test cases with analytical solutions :  a simplified cantilever pipe ,  a
 fixed – fixed pipe (clamped at both ends) ,  a cantilever pipe ,  and a spring-supported
 cantilever pipe .  Although care must be taken to match the finite element and theoretical
 modeling assumptions properly in all cases ,  the results show good agreement .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 A N   ACCURATE   UNDERSTANDING   OF   THE   DYNAMICS  of elastic pipes or tubes conveying fluids
 is necessary for engineering projects in many areas ,  including oil pipelines ,  nuclear
 reactor components ,  and marine drilling .  The classic case of ‘dynamics of elastic tubes
 conveying fluids’ is the fire hose :  as fluid flows rapidly through the flexible hose ,  the
 whipping motions of the hose can become quite violent .  In general the tube will be
 stable up to some critical fluid flow velocity and will be unstable above this velocity .

 Flexible tubes conveying fluids have been studied extensively both analytically and
 numerically .  In most classic analyses the fluid is assumed to be inviscid and
 incompressible while the tube is linear elastic .  The nature of the solutions is af fected by
 the relative mass of the fluid and tube ,  by the flexibility and extensibility of the pipe ,
 and very strongly by the boundary conditions on the tube .  Calculating the critical flow
 velocities ,  mode shapes ,  and vibration frequencies can be a tedious task ,  although the
 governing equations themselves are quite elegant for simple geometries .

 Recently ,  advances in finite element methodology have made it possible to simulate
 the dynamic motion of the fluid coupled with the flexible pipe for arbitrary geometries
 within the context of a general purpose finite element program .  Figure 1 shows the
 classic problem of an elastic pipe conveying fluid whose behavior in the linear regime is
 well-established [see ,  for example ,  Chen (1987) or Paı ̈ doussis (1975)] .  When there is no
 fluid in the pipe the resonant frequencies of the pipe (which then primarily acts as a
 beam) are easily calculated ,  and any general purpose commercial finite element code
 can perform the calculation for arbitrary geometries .  If fluid is added to the pipe ,  but
 there is no flow ,  the resonant frequencies of the system are reduced by the added fluid
 mass .  Most commercial finite element codes can handle this calculation ,  although care
 must be taken not to introduce spurious zero-energy modes due to the fluid (Olson &
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 Figure 1 .  Typical geometry for elastic pipe conveying fluid .

 Bathe 1983 ,  1985 ;  Olson 1987) .  If the fluid is flowing through the pipe ,  the resonant
 frequencies of the system drop dramatically and even go to zero .  It has only recently
 become possible to treat the coupled fluid flow and structural response with the advent
 of nonlinear Lagrangian – Eulerian finite element fluid-structure interaction formula-
 tions (Kock & Olson 1991 ;  Nitikitpaiboon & Bathe 1993) .

 The response of elastic pipes conveying inviscid fluids has been studied extensively
 for various idealized cases since the 1950s ,  and the literature has been reviewed by
 Mote (1972) ,  Wickert & Mote (1988) ,  Chen (1987) ,  Paı ̈ doussis (1987) ,  and Paı ̈ doussis
 & Li (1993) .  Of particular interest to our work are the early studies of the now-classic
 cantilever and fixed – fixed (clamped at both ends) pipes .  Benjamin (1961) and McIver
 (1973) investigated the application of Hamilton’s Principle to an open system of
 changing mass ,  and McIver applied Hamilton’s principle to flexible pipes conveying
 fluid by developing expressions for the potential and kinetic energies of the fluid and
 the pipe .  Chen (1972a ,  1973) studied the case of flow through curved tubes ,  and
 employed dif ferential analyses and extended the application of Hamilton’s Principle to
 these curved tubes and cylindrical structures .  These investigations are particularly
 significant for our work ,  since the finite element formulation is based on a variational
 principle which must reduce to the appropriate governing equations .  Paı ̈ doussis and his
 colleagues [see ,  for instance ,  Paı ̈ doussis (1970 ,  1975) ,  Paı ̈ doussis & Sundararajan
 (1975) ,  Hannoyer & Paidoussis (1979) ,  Paidoussis ,  Cusumano & Copeland (1992)] have
 employed direct dif ferential analysis to develop the governing equations and stability
 limits for pipes under a wide variety of flow and boundary conditions .  Paı ̈ doussis’ early
 work on flutter of conservative systems (Paı ̈ doussis 1975) was particularly useful in
 creating test cases for our finite element analysis .  More recently ,  research has focused
 on the nonlinear dynamics of the systems under consideration [see the extensive review
 by Paı ̈ doussis & Li (1993)] .

 In a particular case involving nonlinear dynamics ,  Edelstein ,  Chen & Jendrzejczyk
 (1986) used a finite element method to solve the analytically derived equations for a
 cantilever pipe .  They developed a time-dependent analysis to identify nonlinear beam
 behavior and limit cycles .  While they employed Galerkin finite element methods which
 are similar to those we use ,  they developed a specific code to solve their specific
 problem .

 By creating exact finite elements specifically for a broad class of pipe flow problems ,
 Sa ̈  llstro ̈  m (1990 ,  1993) and Sa ̈  llstro ̈  m and  Å kesson (1990) created a powerful
 numerical technique for solving the governing equations of pipe flow .  The ef ficiency
 and accuracy of the technique is demonstrated on a number of test cases .  Sa ̈  llstro ̈  m’s
 work is related to that of Edelstein  et al .  (1986) in that the general governing equations
 are first derived ,  and then finite element techniques are employed to solve them .
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 However ,  Sa ̈  llstro ̈  m develops highly ef ficient exact finite elements ,  and Edelstein  et al .
 employ higher order polynomial elements .  In the general finite element formulation we
 employ in this paper ,  the geometries may be completely arbitrary ,  although the
 numerical calculations will be quite computationally intensive as a result .

 Applications of general purpose finite element codes ,  with all their flexibility ,  has
 lagged substantially behind this theoretical and experimental work .  In this study we
 shall verify that a general finite element formulation can (if applied judiciously) be used
 to predict accurately the transient response of flexible pipes conveying fluids by
 examining the results for four test cases with analytical solutions :  a simplified cantilever
 pipe ,  a fixed – fixed pipe ,  a cantilever pipe ,  and a spring-supported cantilever pipe .  We
 use the nonlinear  u  2  r  2  f  2  l   fluid-structure formulation developed by Kock &
 Olson (1991) and implemented as an Arbitrary Lagrangian – Eulerian method by
 Nitikitpaiboon & Bathe (1993) .  (Although the commercial code ADINA includes this
 formulation ,  we employ the research code developed by Kock & Olson . ) In this way
 we hope to demonstrate that finite element methods can be used to model specific pipe
 systems conveying fluids for arbitrary complicated geometries and boundary conditions
 of engineering interest .

 2 .  MODELING ASSUMPTIONS

 The assumptions generally used in creating models of flexible pipes conveying fluids are
 that (i) the pipe behaves as a single linear elastic beam with length  L  and properties  E
 (Young’s modulus) ,   I  (moment of inertia) ,  and  m  (mass per unit length) ;  (ii) the fluid
 moves in inviscid slug flow ,  with a constant uniform velocity  U  through the pipe ;  the
 fluid has a mass  M  per unit length and discharges to the atmosphere at the pipe outlet ;
 (iii) the fluid – structure interface is such that the fluid moves with the pipe ,  and the
 pressure in the fluid acts on the pipe .

 With these assumptions ,  the nondimensionalized governing equation for the simplest
 case becomes (Chen 1987)

 Û
 4 h

 Û j  4  1  u 2  Û
 2 h

 ­ j  2  1  2 b  1/2 u
 ­ 2 h

 ­ j  ­ τ
 1

 ­ 2 h

 ­ τ  2  5  0 ,  (1)

 where  b  5  M  / ( M  1  m ) is the relative mass of fluid ,   u  5  U ( ML 2 / EI ) 1 / 2  is the relative
 flow speed of fluid ,   h   is the dimensionless vertical displacement of the pipe ,   j   is the
 dimensionless axial coordinate ,  and  τ  5  [ EI  / ( M  1  m )] 1 / 2 t  / L 2  is the dimensionless time .

 In order to allow direct comparisons to the analytical solutions ,  our finite element
 approach must include some restrictions as shown in Figure 2 .  The pipe is modeled as a
 standard 2-D nonlinear elastic solid (Bathe 1996) ,  and the geometry is captured by
 using two plates with their neutral axes constrained to have equal vertical displace-
 ments .  (This allows the fluid to be held between the plates ,  while the plates themselves

Two plates

Neutral axes of plates constrained together

 Figure 2 .  Finite element model for elastic pipe .
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 act as a single beam .  While the constraint equations do not directly impose the
 condition that the solid act as a simple beam-like pipe ,  two long thin plates which are
 forced to move together in the vertical direction will naturally behave in this fashion . )
 The fluid itself is incompressible ,  inviscid ,  and irrotational ,  so that

 =  2 f  5  0  (2)
 and

 P stag  5  P  1  1 – 2 r  ( = f  ) 2  1  r f ~  .  (3)

 Here  f   is the velocity potential in the fluid ,   r   is the fluid density ,   P  is the pressure in
 the fluid ,  and  P s t a g  is the stagnation pressure in the fluid .  At the fluid – structure
 interface ,  the normal fluid velocity equals the normal solid velocity  Û f  / Û n  5  u ~  n   and the
 fluid pressure ,   P ,  equals the normal stress in the solid .

 The nonlinear finite element equations resulting from applying the assumptions
 discussed to the nonlinear  u  2  r  2  f  2  l   formulation (Kock & Olson 1991) take the
 form
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 where  U  is the vector of nodal displacements for solid elements ,   F   is the vector of
 nodal velocity potentials for fluid elements ,   R U   represents the external loads on the
 structure ,  and  R F   is used to enforce inflow or outflow conditions on the fluid .   K U U   is
 the stif fness matrix for the solid ,   K fs

 UU   is a matrix incorporating stif fening of the solid
 caused by the fluid (if any) ,   K fs

 F U   is the fluid – structure stif fness coupling ,   K F F   is a
 matrix to enforce fluid continuity ,   C fs

 F U   is a matrix to enforce fluid – structure boundary
 conditions ,  and  M U U   is the mass matrix for the solid .  A full description of the finite
 element formulation and the significance of each term is given in Kock & Olson (1991) .
 r   and  l  ,  which normally appear as solution variables are not required since the fluid is
 incompressible and the mass of the fluid in the domain is allowed to vary if necessary .

 Since this is a set of nonlinear time-dependent equations ,  we use them to find the
 transient response of the pipe – fluid system to an initial deflection and use that time
 response to identify characteristic frequencies by taking a Discrete Fourier Transform
 (DFT) of the time-dependent data .  These characteristic frequencies can then be
 compared to the analytically predicted values .  The analysis requires four steps :

 (i)  perform a linear frequency analysis with zero flow to identify the first mode of
 the pipe – fluid system with no flow ;

 (ii)  fix the pipe in its first no-flow mode ,  and perform a nonlinear steady flow
 analysis ;  (this requires a full Newton iteration) ;

 (iii)  use the steady flow solution from (ii) as the initial condition for a nonlinear
 transient analysis ;  (this can be performed with a modified Newton iteration ,  using the
 original stif fness matrix throughout) ;

 (iv)  find characteristic frequencies by DFT analysis of the displacement  y  ersus  time
 data for points on the pipe ,  if appropriate .

 Note that this approach does not guarantee that we will identify the mode which will
 become unstable first ,  rather it simply analyses the transient response of the system to
 an initial condition which is very likely to excite at least a part of the mode which will
 become unstable first .  In fact ,  several modes may be excited simultaneously .
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 Figure 3 .  Simplified cantilever pipe test case .

 3 .  TEST CASES

 We demonstrate the procedure on four test cases .  The first is a simplified cantilever
 pipe ,  which is a single degree-of-freedom system which nevertheless displays damping
 ef fects caused by fluid flow .  The second is an idealized fixed – fixed pipe .  The third case
 is a model of the cantilever pipe studied experimentally by Edelstein  et al .  (1986) .  The
 fourth test case is another cantilever pipe ,  this time clamped at the base and supported
 by a spring at the outflow end .

 3 . 1 .  S IMPLIFIED  C ANTILEVER  P IPE

 Figure 3 shows the simplified cantilever pipe test case .  The pipe is modeled as rigid and
 all of the flexibility is lumped into the torsional spring  k  at its base .  Applying
 conservation of energy to the system gives

 a ̈  1  2 z v n a ~  1  v  2
 n a  5  0 ,  (6)

 where  a   is the angular deflection of the pipe ,

 v  2
 n  5

 3 k
 ( M  1  m ) L 3  ,  (7)

 and

 z  5
 3 UM

 2 L v n ( M  1  m )
 .  (8)

 This has the usual solution for an initial angle  a  0  ,

 a  5  a  0 e
 2 v n z t  cos( v n 4 1  2  z  2 t ) .  (9)

 Notice that the fluid flow causes the mass-spring system to behave as a mass-spring-
 damper system ,  and that the damping depends on the fluid flow velocity .

 Figure 4 shows the simple finite element model used for this test case ,  which contains
 only seven nodes .  The pipe is arbitrarily chosen to be 10  m long and 1  m tall ,  and is
 made approximately rigid by setting its Young’s modulus to 10 8  N / m 2 .  The solid is
 taken as massless ,  while the fluid density is set at 1  kg / m 2 .  The volume flowrate
 through the pipe is  Q  5  UA ,  where  A  is 1  m 2 .  The Young’s modulus of the spring
 element is set so that the ef fective torsional stif fness is  k  5  333  N  m .  Overall ,  this gives
 a natural frequency  v n   of 1  rad / s and a damping ratio  z  5  (3 / 20) U .  It is important to
 apply the inflow and outflow boundary conditions properly :  at the inflow boundary we
 specify a zero velocity potential ,  while at the outflow boundary we impose that the
 gradient of the velocity potential is  U .  Figures 5 and 6 compare the analytical and
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 Figure 4 .  Finite element model for simplified cantilever pipe test case .

 finite element results for tip deflection versus time for two flow speeds .  We find good
 agreement between the two solution approaches .

 3 . 2 .  F IXED -F IXED  P IPE

 Figure 1 shows the fixed – fixed pipe .  For our analytical computation we choose the
 relative mass  b  5  0 ? 1 in equation (1) [following Paı ̈ doussis (1975)] ,  and plot the
 dimensionless oscillation frequency versus dimensionless flow speed as shown in Figure
 7 .  The oscillation frequency drops to zero as the flow speed increases ,  but there is no
 damping introduced for these conditions .

 The two-dimensional finite element model for the problem is shown in Figure 8 .  The
 pipe consists of two plates ,  each 1  m  3  0 ? 01  m ,  with the vertical displacements of their
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 Figure 5 .  Comparison of finite element and analytical solutions to the simplified cantilever pipe test case ;
 U  5  1 ,  z  5  0 ? 15 .
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 Figure 6 .  Comparison of finite element and analytical solutions to the simplified cantilever pipe test case ;
 U  5  2 ,  z  5  0 ? 3 .

 neutral axes constrained together .  Each plate is discretized with 300  3  2 four-node solid
 elements ,  with a Young’s modulus of 1 ? 2  3  10 9  N / m 2 ,  density of 9000  kg / m 3 ,  and a
 Poisson’s ratio of zero .  The fluid-filled gap between the plates is 0 ? 02  m high and is
 discretized with 300  3  1 four-node fluid elements .  The density of the fluid is taken to be
 1000  kg / m 3  so that the relative mass for the finite element model matches the  b  5  0 ? 1
 for the analytical computation .  Two-node fluid – structure interface elements line the
 ‘‘pipe’’ enforcing the compatibility between the fluid and solid elements .  Here the

8

25

0
Dimensionless flow speed, u

D
im

en
si

on
le

ss
 o

sc
il

la
ti

on
 f

re
qu

en
cy

, ω

15

10

5

4 6

20

2

 Figure 7 .  Dimensionless fundamental frequency versus dimensionless flow speed for fixed – fixed pipe with
 b  5  0 ? 1 .
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 Figure 8 .  Finite element model for fixed – fixed pipe .

 boundary conditions at the inflow and outflow are :  at the inlet to the system we specify
 the gradient of the velocity potential ,  while at the outflow boundary the velocity
 potential is fixed at zero (since the pressure is zero there) .

 Figures 9 and 10 show plots of the mid-span deflection of the pipe versus
 dimensionless time for zero flow and a dimensionless flow speed  u  5  5 ,  respectively .
 The zero flow case ,  of course ,  simply verifies the response of the system in its first
 eigenmode and shows that the response is at a single frequency .  Using the same initial
 conditions for the flow case produces a time-response which has several frequency
 components since those initial conditions now excite several of the flow-modified
 modes .  By performing a DFT analysis of the time response we can identify the
 important frequencies in the response .  Computing results for several dif ferent flow
 velocities allows us to compare the finite element solutions to the analytical solution ,  as
 shown in Figure 11 .  Notice that the finite element results produce a slightly stif f
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 Figure 9 .  Mid-span deflection of fixed – fixed pipe versus dimensionless time with no fluid flow .
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 Figure 10 .  Mid-span deflection of fixed – fixed pipe versus dimensionless time with fluid flow ,   u  5  5 .

 response over the entire flow speed range ,  as might be expected with four-node solid
 elements .

 3 . 3 .  C ANTILEVER  P IPE

 Figure 12 shows the cantilever pipe studied experimentally and theoretically by
 Edelstein  et al .  (1986) .  The behavior of the first mode of the cantilever pipe is very
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 Figure 11 .  Comparison of finite element and analytical results for frequency versus flow speed for
 fixed – fixed pipe ( b  5  0 ? 1) .
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 Figure 12 .  Cantilever pipe (1 0  ;  1  in  5  25 ? 4  mm) .

 dif ferent from that of the fixed-fixed pipe .  As Edelstein  et al .  state ,  ‘‘At zero flow ,  the
 tube responds as a beam to an initial disturbance .  As the flow velocity increases ,  tube
 damping values increase .  .  .  .  When the flow velocity is relatively high ,  the tube is
 critically damped .  .  .  .  However ,  when the flow velocity is further increased ,  damping
 becomes smaller again ,  and eventually ,  the tube loses stability by flutter’’ .  By applying
 the appropriate cantilever boundary conditions to the linearized equation (1) we can
 once again identify the dominant response modes for a given flow velocity ,  but the
 computation is made more dif ficult by the fact that the characteristic frequencies are
 complex .

 The mesh and boundary conditions for the finite element analysis are shown in
 Figure 13 .  The geometry was taken to be the same as in the fixed – fixed pipe ,  but the
 solid material properties were changed to simulate the relative mass of  b  5  0 ? 484 used
 in the experiment (Young’s modulus 6 ? 61  3  10 8  N / m 2 ,  density 1070  kg / m 3 . ) The fluid
 properties were unchanged .  Once again a proper imposition of the boundary conditions
 on the flow is essential for accurate computations .  Because the pipe end is moving ,  we
 can no longer fix the outflow velocity potential at zero .  Therefore ,  we apply a zero
 velocity potential as the inflow boundary condition and specify the gradient of the
 velocity potential at the outflow boundary .

 It is important to note that our discrete finite element model should be expected to
 give good approximations to the true response of the continuous system ,  since we are
 examining the response of the lowest mode in a discrete system with almost 2000
 degrees of freedom .  Thus ,  we are not likely to observe the discrepancies between
 discrete and continuous systems that Paı ̈ doussis & Deksnis (1970) observed for
 nonconservative systems when the number of degrees of freedom was small compared
 to the number of modes examined .



 FEM FOR ELASTIC PIPES CONVEYING FLUID  217

φ = 0 1
2

ρQ

φ = 0
1
2

ρQ

 Figure 13 .  Finite element model for cantilever pipe .

 Figures 14 through 17 compare the tip deflection versus time for the finite element
 solution to the response of the first mode of the system determined from the analytical
 solution .  When the water velocity is 1  m / s (Figure 14) ,  the tube response shows
 substantial damping .  There is good agreement between the finite element solution and
 the response of the system in its first analytical mode .  As the flow velocity is increased
 to 8  m / s ,  the tube becomes heavily damped (Figure 15) .  Here the agreement between
 the finite element and first mode responses is relatively poor ,  primarily because several
 flow-modified modes participate at this flow speed .  As the flow velocity is increased to
 20  m / s the tube damping again decreases (Figure 16) and the agreement between the
 finite element and first mode solutions is good .  At a flow velocity of 24  m / s the
 response of the system is clearly unstable ,  in agreement with the first mode analytical
 solution (Figure 17) .  Notice also that the frequency has changed by almost a factor of
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 Figure 14 .  Finite element tip deflection versus time and response of first analytical mode for cantilever
 pipe .  Water velocity 1  m / s ,  first analytical frequency  v  5  5 ? 7  1  1 ? 0i .
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 Figure 15 .  Finite element tip deflection versus time and response of first analytical mode for cantilever
 pipe .  Water velocity 8  m / s ,  first analytical frequency  v  5  7 ? 0i .

 ten as the flow speed was increased from 1 to 24  m / s .  Despite the rich and complicated
 nature of the pipe response at various flow speeds ,  the coupled nonlinear fluid –
 structure interaction formulation was able to capture the important features of the
 deflection versus time .
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 Figure 16 .  Finite element tip deflection versus time and response of first analytical mode for cantilever
 pipe .  Water velocity 20  m / s ,  first analytical frequency  v  5  27 ? 8  1  10 ? 2i .
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 Figure 17 .  Finite element tip deflection versus time and response of first analytical mode for cantilever
 pipe .  Water velocity 24  m / s ,  first analytical frequency  v  5  48 ? 4  2  8 ? 7i .

 3 . 4 .  S PRING -S UPPORTED  C ANTILEVER  P IPE

 In order to demonstrate the flexibility of a general purpose finite element code for fluid
 flow problems ,  let us modify the properties of the pipe from the previous example so
 that  b  5  0 ? 2 ,  and add a spring to restrict the motion of the free end .  This is the case
 discussed by Chen (1987) ,  where he specifically chose  a #  5  k s L

 3 / EI  5  10 .  The mesh and
 boundary conditions are unchanged ,  except for the addition of the spring .

 Figure 18 compares the data from Chen’s graph to the finite element results for
 dimensionless flow velocities from  u  5  0 to  u  5  5 ,  and shows reasonable agreement for
 the real and imaginary parts of the dimensionless frequency .  Notice that the plot
 compares results for both modes 1 and 2 at dimensionless flow velocities of 4 and 5 .
 Because the method used to excite the transient response of the system uses mode 1
 from the zero-flow case ,  at low flow speeds we observe a transient response dominated
 by motion in mode 1 .  As the flow speed increases ,  the zero-flow mode-1 initial values
 excite substantial motions in both modes 1 and 2 .  (In this case ,  the frequencies can be
 most easily extracted from the discrete transient response by a least-squares fit of the
 data . ) Once again it is clear that the discrete finite element methods employed here
 track the transient response of the continuous system well ,  and that the real and
 complex parts of the lowest modes of the system may be extracted with reasonable
 accuracy from the transient data .

 4 .  DISCUSSION AND FUTURE WORK

 As has been observed for some time ,  flow in flexible pipes can drastically alter the
 oscillation frequencies and transient response of the pipes .  In engineering design of
 piping systems it may be important to account for fluid flow in studying system stability
 to various loading conditions .  Until recently ,  it was impossible to include fluid flow
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 Figure 18 .  Comparison of finite element and analytical solutions to the spring-supported cantilever pipe
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 respectively ,  for varying  u .

 ef fects accurately in the finite element analyses of piping systems which are generally
 used to assess the system designs .

 As we have demonstrated in this study ,  it is currently possible to use appropriate
 general purpose finite element programs to predict the response of elastic pipes
 conveying fluid .  The formulation used is nonlinear ,  employs a Lagrangian – Eulerian
 approach to allow the fluid to track the solid ,  and includes bulk flow ef fects in the fluid .
 Careful use of such a formulation (in particular ,  careful attention to the fluid inflow and
 outflow boundary conditions) gave us good comparisons with analytical solutions for
 the four test cases examined :  a simplified cantilever pipe ,  a fixed – fixed pipe ,  a
 cantilever pipe ,  and a spring-supported cantilever pipe .

 A number of relatively straightforward extensions to the method have not been
 addressed in this paper ,  but could be accommodated in future work .  In the test cases
 examined here the solid has been treated as linear elastic and the displacements are
 small ,  but the overall coupled fluid – structure problem is treated as nonlinear .  If we
 introduce initial conditions which are not small ,  the resulting motions of the pipe will
 be geometrically nonlinear .  Alternatively ,  one could employ a nonlinear material
 model for the solid and examine the ef fects of strain-softening or strain-hardening in
 the pipe material .  Contact problems such as the ef fect on the system of a springy stop
 on one side could also be included .  Nonlinearities which have been studied by other
 researchers (Paı ̈ doussis & Li 1993) could be examined as well .  To extend the basic
 method to three-dimensions requires that a three-dimensional mesh be created and
 analysed (which would be extremely computer intensive) .  However ,  by incorporating
 shell elements and their associated coupling matrices into the code ,  a reduction in the
 three-dimensional analysis time could be ef fected .  Because it is a finite element
 method ,  various linear or nonlinear springs could be added ,  or the geometry of the
 pipe could be changed so that it is first straight ,  then slowly tapering ,  or even curved .

 Additional fluid nonlinearities are not as simple to include .  The ideal fluid is already
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 nonlinear in the usual finite element sense ,  since the  1 – 2 r V  2  term is properly accounted
 for in the fluid equations .  Changes in the geometry of the pipe which af fect the fluid
 flow  but which do not impact the ideal fluid assumption  may be included—the pipe can
 taper ,  be curved ,  and so forth .  A fluid – velocity dependent friction force at the wall of
 the pipe could be included .  However ,  incorporating truly viscous ef fects is not ,
 realistically ,  an option with the current formulation .  Because the fluid formulation is
 based on a velocity potential ,  it is not capable of (for example) properly accounting for
 viscous separation at sudden changes in pipe diameter .  To incorporate true viscous
 action would require a full solution of the (turbulent!) Navier-Stokes equations ,
 coupled with the nonlinear solid motion .  Such studies are generally tremendously
 expensive computationally .

 In future work in this area ,  it would be useful to give special attention to reducing
 the computational cost of three-dimensional analyses which could more directly
 simulate actual pipes .  Ef fects on the transient response of engineering piping systems to
 various practical modifications could then be studied in this manner .

 R EFERENCES

 B ATHE ,  K .  J .  1996  Finite Element Procedures .  Englewood Clif fs ,  NJ . :  Prentice-Hall .
 B ENJAMIN ,  T .  B .  1961 Dynamics of a system of articulated pipes conveying fluid .  Part 1 .  theory .

 Proceedings of the Royal Society of London ,  Series A  261 ,  457 – 486 .
 C HEN ,  S .  S .  1972a Flow-induced in-plane instabilities of curved pipes .   Nuclear Engineering and

 Design  23 ,  29 – 38 .
 C HEN ,  S .  S .  1972b Vibration and stability of a uniformly curved tube conveying fluid .   Journal of

 the Acoustical Society of America  51 ,  223 – 232 .
 C HEN ,  S .  S .  1973 Out-of-plane vibration and stability of curved tubes conveying fluid .   Journal of

 Applied Mechanics  40 ,  362 – 368 .
 C HEN ,  S .  S .  1987  Flow - Induced Vibration of Circular Cylindrical Structures .  New York :

 Hemisphere Publishing Corporation .
 E DELSTEIN ,  W .  S .,  S .  S .  C HEN  & J .  A .  J ENDRZEJCZYK  1986 A finite element computation of the

 flow-induced oscillations in a cantilevered tube .   Journal of Sound and Vibration  107 ,
 121 – 129 .

 H ANNOYER ,  M .  J .  & M .  P .  P A I ̈ DOUSSIS  1979 Dynamics of slender tapered beams with internal or
 external axial flow .  Part 2 :  Experiments .   Journal of Applied Mechanics  46 ,  52 – 57 .

 K OCK ,  E .  & L .  O LSON  1991 Fluid-structure interaction analysis by the finite element method .  A
 variational approach .   International Journal for Numerical Methods in Engineering  31 ,
 463 – 491 .

 M C I VER ,  D .  B .  1973 Hamilton’s principle for systems of changing mass .   Journal of Engineering
 Mathematics  7 ,  249 – 261 .

 M OTE ,  Jr .,  C .  D .  1972 Dynamic stability of axially moving materials .   Shock and Vibration Digest
 4 (4) ,  2 – 11 .

 N ITIKITPAIBOON ,  C .  & K .  J .  B ATHE  1993 An arbitrary Lagrangian-Eulerian velocity potential
 formulation for fluid-structure interaction .   Computers and Structures  47 ,  871 – 891 .

 O LSON ,  L .  G .  1987 Static analysis of contained fluids with potential-based and displacement-
 based fluid finite elements .   Engineering Computations  4 ,  131 – 138 .

 O LSON ,  L .  G .  & K .  J .  B ATHE  1983 A study of displacement-based fluid finite elements for
 calculating frequencies of fluid and fluid-structure systems .   Nuclear Engineering and Design
 76 ,  137 – 151 .

 O LSON ,  L .  G .  & K .  J .  B ATHE  1985 Analysis of fluid-structure interactions .  A direct symmetric
 coupled formulation based on the fluid velocity potential .   Computers and Structures  21 ,
 21 – 32 .

 P A I ̈ DOUSSIS ,  M .  P .  1970 Dynamics of tubular cantilevers conveying fluid .   I . Mech . E . Journal of
 Mechanical Engineering Science  12 ,  85 – 103 .

 P A I ̈ DOUSSIS ,  M .  P .  1975 Flutter of conservative system of pipes conveying incompressible fluid .
 I . Mech . E . Journal of Mechanical Engineering Science  17 ,  19 – 25 .



 L .  G .  OLSON AND D .  JAMISON 222

 P A I ̈ DOUSSIS ,  M .  P .  1987 Flow-induced instabilities of cylindrical structures .   Applied Mechanics
 Re y  iews  40 ,  163 – 175 .

 P A I ̈ DOUSSIS ,  M .  P .,  J .  C USUMANO  & G .  C OPELAND  1992 Low-dimensional chaos in a flexible
 tube conveying fluid .   Journal of Applied Mechanics  59 ,  196 – 205 .

 P A I ̈ DOUSSIS ,  M .  P .  & E .  B .  D EKSNIS  1970 Articulated models of cantilevers conveying fluid :  The
 study of a paradox .   I . Mech . E . Journal of Mechanical Engineering Science  12 ,  288 – 300 .

 P A I ̈ DOUSSIS ,  M .  P .  & G .  X .  L I  1993 Pipes conveying fluid :  A model dynamical problem .   Journal
 of Fluids and Structures  7 ,  137 – 204 .

 P A I ̈ DOUSSIS ,  M .  P .  & C .  S UNDARARAJAN  1975 Parameteric and combination resonances of a
 pipe conveying pulsating fluid .   Journal of Applied Mechanics  42 ,  780 – 784 .

 S A ̈  LLSTR O ̈  M ,  J .  H .  1990 Fluid-conveying damped Rayleigh-Timoshenko beams in transverse
 vibration analyzed by use of an exact finite element .  Part II :  Applications .   Journal of Fluids
 and Structures  4 ,  573 – 582 .

 S A ̈  LLSTR O ̈  M ,  J .  H .  1993 Fluid-conveying damped Rayleigh-Timoshenko beams in transient
 transverse vibration studied by use of complex modal synthesis .   Journal of Fluids and
 Structures  7 ,  551 – 563 .

 S A ̈  LLSTR O ̈  M ,  J .  H .  & B .  A .   Å KESSON  1990 Fluid-conveying damped Rayleigh-Timoshenko beams
 in transverse vibration analyzed by use of an exact finite element .  Part I :  Theory .   Journal of
 Fluids and Structures  4 ,  561 – 572 .

 W ICKERT ,  J .  & C .  D .  M OTE ,  Jr .  1988 Current research on the vibration and stability of
 axially-moving materials .   Shock and Vibration Digest  20 (5) ,  3 – 13 .


